88
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Ali, S., Charles, T. C., & Glick, B. R., (2014). Amelioration of high salinity stress damage by
plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol.
Bioch., 80, 160−167.
Alizadeh, O., Zare, M., & Nasr, A. H., (2011). Evaluation effect of mycorrhiza inoculate
under drought stress condition on grain yield of sorghum (Sorghum bicolor). Adv. Environ.
Biol., 5, 2361–1364.
Al-Karaki, G. N., (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi
and subsequent performance under irrigation with saline water. Sci. Hortic., 109, 1–7.
Allen, M. F., (2011). Linking water and nutrients through the vadose zone: A fungal interface
between the soil and plant systems. J. Arid. Land., 3, 155–163.
Apel, K., & Hirt, H., (2004). Reactive oxygen species: Metabolism, oxidative stress, and
signal transduction. Annu. Rev. Plant. Biol., 55, 373–399.
Arkhipova, T. N., Prinsen, E., Veselov, S. U., Martinenko, E. V., Melentiev, A. I., &
Kudoyarova, G. R., (2007). Cytokinin producing bacteria enhance plant growth in drying
soil. Plant. Soil., 292, 305–315.
Ashraf, M., Shahbaz, M., & Ali, Q., (2013). Drought-induced modulation in growth and
mineral nutrients in canola (Brassica napus L.). Pak. J. Bot., 45, 93–98.
Audet, P., & Charest, C., (2007). Heavy metal phytoremediation from a meta-analytical
perspective. Environ. Pollut., 147, 231–237.
Babu, A. G., Shea, P. J., Sudhakar, D., Jung, I. B., & Oh, B. T., (2015). Potential use of
Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy
metal (loid)-contaminated mining site soil. J. Environ. Manage., 151, 160–166.
Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A.,
et al., (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica
is associated with a strong increase in antioxidants. New Phytol., 180, 501–510.
Bao, X., Wang, Y., Li, S., & Olsson, P. A., (2019). Arbuscular mycorrhiza under water carbon-
phosphorus exchange between rice and arbuscular mycorrhizal fungi under different
flooding regimes. Soil Biol. Biochem., 129, 169–177.
Bárzana, G., Aroca, R., Paz, J. A., Chaumont, F., Martínez-Ballesta, M. C., Carvajal, M., &
Ruiz-Lozano, J. M., (2012). Arbuscular mycorrhizal symbiosis increases relative apoplastic
water flow in roots of the host plant under both well-watered and drought stress conditions.
Ann. Bot., 109, 1009–1017.
Bennett, A. E., & Classen, A., (2020). Climate change influences mycorrhizal fungal–plant
interactions, but conclusions are limited by geographical study bias. Ecology, 101, e02978.
Berg, G., (2009). Plant-microbe interactions promoting plant growth and health: Perspectives
for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol., 84,
11–18.
Bernardo, L., Carletti, P., Badeck, F., Rizza, F., Morcia, C., Ghizzoni, R., Rouphael, Y., et al.,
(2019). Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to
water stress in wheat cultivars. Plant. Physiol. Biochem., 137, 203–212.
Bhattacharyya, P. N., & Jha, D. K., (2012). Plant growth-promoting rhizobacteria (PGPR):
Emergence in agriculture. World J. Microbiol. Biotechnol., 28, 1327–1350.
Cameron, D. D., Neal, A. L., Van, W. S. A., & Ton, J., (2013). Mycorrhiza-induced resistance:
More than the sum of its parts? Trends Plant. Sci., 18, 539–545.
Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J., &
Ongena, M., (2013). Plant defense stimulation by natural isolates of Bacillus depends on
efficient surfactin production. Mol. Plant Microbe Interact., 27, 87–100.