88

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Ali, S., Charles, T. C., & Glick, B. R., (2014). Amelioration of high salinity stress damage by

plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol.

Bioch., 80, 160−167.

Alizadeh, O., Zare, M., & Nasr, A. H., (2011). Evaluation effect of mycorrhiza inoculate

under drought stress condition on grain yield of sorghum (Sorghum bicolor). Adv. Environ.

Biol., 5, 2361–1364.

Al-Karaki, G. N., (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi

and subsequent performance under irrigation with saline water. Sci. Hortic., 109, 1–7.

Allen, M. F., (2011). Linking water and nutrients through the vadose zone: A fungal interface

between the soil and plant systems. J. Arid. Land., 3, 155–163.

Apel, K., & Hirt, H., (2004). Reactive oxygen species: Metabolism, oxidative stress, and

signal transduction. Annu. Rev. Plant. Biol., 55, 373–399.

Arkhipova, T. N., Prinsen, E., Veselov, S. U., Martinenko, E. V., Melentiev, A. I., &

Kudoyarova, G. R., (2007). Cytokinin producing bacteria enhance plant growth in drying

soil. Plant. Soil., 292, 305–315.

Ashraf, M., Shahbaz, M., & Ali, Q., (2013). Drought-induced modulation in growth and

mineral nutrients in canola (Brassica napus L.). Pak. J. Bot., 45, 93–98.

Audet, P., & Charest, C., (2007). Heavy metal phytoremediation from a meta-analytical

perspective. Environ. Pollut., 147, 231–237.

Babu, A. G., Shea, P. J., Sudhakar, D., Jung, I. B., & Oh, B. T., (2015). Potential use of

Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy

metal (loid)-contaminated mining site soil. J. Environ. Manage., 151, 160–166.

Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A.,

et al., (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica

is associated with a strong increase in antioxidants. New Phytol., 180, 501–510.

Bao, X., Wang, Y., Li, S., & Olsson, P. A., (2019). Arbuscular mycorrhiza under water carbon-

phosphorus exchange between rice and arbuscular mycorrhizal fungi under different

flooding regimes. Soil Biol. Biochem., 129, 169–177.

Bárzana, G., Aroca, R., Paz, J. A., Chaumont, F., Martínez-Ballesta, M. C., Carvajal, M., &

Ruiz-Lozano, J. M., (2012). Arbuscular mycorrhizal symbiosis increases relative apoplastic

water flow in roots of the host plant under both well-watered and drought stress conditions.

Ann. Bot., 109, 1009–1017.

Bennett, A. E., & Classen, A., (2020). Climate change influences mycorrhizal fungal–plant

interactions, but conclusions are limited by geographical study bias. Ecology, 101, e02978.

Berg, G., (2009). Plant-microbe interactions promoting plant growth and health: Perspectives

for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol., 84,

11–18.

Bernardo, L., Carletti, P., Badeck, F., Rizza, F., Morcia, C., Ghizzoni, R., Rouphael, Y., et al.,

(2019). Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to

water stress in wheat cultivars. Plant. Physiol. Biochem., 137, 203–212.

Bhattacharyya, P. N., & Jha, D. K., (2012). Plant growth-promoting rhizobacteria (PGPR):

Emergence in agriculture. World J. Microbiol. Biotechnol., 28, 1327–1350.

Cameron, D. D., Neal, A. L., Van, W. S. A., & Ton, J., (2013). Mycorrhiza-induced resistance:

More than the sum of its parts? Trends Plant. Sci., 18, 539–545.

Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P., Dommes, J., &

Ongena, M., (2013). Plant defense stimulation by natural isolates of Bacillus depends on

efficient surfactin production. Mol. Plant Microbe Interact., 27, 87–100.